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ABSTRACT

Low-frequency component electric microfield distributions in a plasma
are calculated at both a neutral and charged poing{ It is shown that this
calculation aliows for the inclusion of all correlatioms to a high degree of
accuracy. The theory is compared with the Holtsmark and Baranger-Mozer theories.
A detailed analysis of all approximations is included, together with a Monte‘
Carlo study. Numerical results are shown both graphically gnd in tabulated

form.
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I. TNTRODUCTION

This is the second paper dealing with the problem of electric-microfield
distributions in plasmas. The first, hereafter referred to as 1, dealt with
high-frequency component plasmas, where the plasma was assumed to consist of
N-charged particles moving in a uniform neutraliiing backgroundl. These N
particles interacted with each other through a Coulomb potential.

The problem of the low-frequency component is the subject of this pavner.
Here the plasma is represented as a collection of N singly-charged shielded
ions which interact with each other through an effective potential. The
effective potential includes the effect of the ion-electron interactions. This
model of a plasma has been, and is currently, used'when dealing with the effects
of ions on radiating atoms and/or ions immersed in a plasma2’3. The N per-
turbing ions in the plasma are assumed to interact with each other through a
shielded Coulomb or Debye—HGckel potential. The plasma is considered to be
in thermal equilibrium and macroscopically neutral.

When treating the problem of the electric field distribution at a charged
particle, an additional (N+1)st particle, conveniently placed at the origin
of the reference frame, must be included. As in I, the problem of the electric-
microfield distribution at a neutral point is just a special case of the charged-
point development.

Section II of this paper outlines the development of the formalism. The
numerical results and analysis, including a comparison with the B-M theorva,
are discussed in Section IITI. Final conclusions are presented in the fourth

and final section.

.
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TI. FORMALISM

The equations presented in this section originate from the formalism
developed in I. Again, the problem is the calculation of the electric-micro-

field distribution function, P(e¢), which is found from an evaluation of the

equation

P(e) = 2n—lsj T(2)sin(eg)2ds, (1)
(o]

where T(2) is given by,

- er. r. T, /) -
j
where
N .
-r,./A
v § 22, 1. | . (3)
0=i<j "ij

and ) is the Debye length,

N = (kT/4mme2) /2, “)
Now express the total potential, V, in the form )
Vo=V A (5)
where
o, - ;23 e-ario/A. : ©

a is an arbitrary positive constant.

With these basic definitions we can follow the procedure in I (Eq.12

to 24) to arrive at the following expression for T(g):




=4~
T@) = [T,0)/T (@) ]exp(] (nl/§ 1)In ()=, ()1} (7)
Again as in I, the factor To(g)/’ro(o) has the form
T 2
[T (R)/T (0)] = VL7, (8)
where y is given by the expression:
y = [a/4(a?-2)2][a5+2(1-2/2)a"+303+8 (V2-1)a2-6a+4 (2-V2) 1, (9)

and where

= = = 20 )
L = !Leo, ac: r0/>\, e, = e/r0 : (10)
r, is the much discussed ion-sphere radius which is defined by the relation
ﬂro3n =1, , (11)

Next, we consider the factors resulting from the terms in the series

exponent. For j = 1, we find, using Eqs. 28 and 29 of I, that

I1 = n[hl(R)—hlgo)] (12)
| _ * F(x) {sin[LG(x)] _.| _ ® 2 5(x%) [sin[Lg(x!I _ ]
I, = 3L dx xZ2e [[LG(X)] 1} 3de x%e L] 1 (13)
where: )
x = r/ro

2
1 - ~-v2
F(x) ——ix —2—-_21[9_ %3X_(a2-1)e ax]

G(x)

(a2-2)"1 E-lr [(a2-1)e” " 28%_~0%] (14)
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+2 [VZ (@2 -1ye™ 22 e 3%

2 247, - -
s(x) = %; %E:ﬁj{e aax_e /Eéx}

-
q(x) = [g-z-:—;J

[l_ (e-/féx_e-aax)

%2

_ g_(ae-aax_/ié-/iéx)]

X

Following Eqs.31 to 33 in I, we find for the second term in the series exponent

(j = 2) the expression:

1,(8) =5 n2[h,(8)-h,(0)]
= T DT 3era? |}
{ }= {j es(x2’1k+1,2<a'x2)E‘3“20 516G 13, L QaGep1] =2 as)
(%]

|

—akoL)es(XZ)Il/z(a'xz)[e-SWZO -1]x23/2[]xzes(x1)x

' eS(xl)Kk.H_/z(a'xl) J}'BW]_O jk[LG(xl).]-jk[Lq(xl)]:le3/2<1)(1 dX2
X2

1/2 "

(a'x) [e~P¥10 -l]x13/2dx1] dx, }

Four of the functions appearing in the above equation, G(x), Y109 q(x), and
s(x) have already been defined. It remains to note that the jk(—) represents
a spherical Bessel function of order k, while I and K refer to modified Bessel
functions of the first and third kind respectively? Another feature of this
last equation which should be noted is that the argument of the modified
Bessel function invol?es an a' which is defined by the relation a' = v2a.

Thus we finally arrive at the result,

T(R) = exp[—yL2+Il(£)+Iz(2)]- (16)

This expression is used in Eq.(1) to calculate P(e) at a charged particle.
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To determine P(eg) at a neutral point, the above equations are easily altered
to an appropriate form. Modifications are necessary since we no longer need
to include any central interactions in the potential energy of the system.
When this change is introduced into the equatioms, it is found that To(l)/To(o)

is not altered, but that Il(z) and IZ(Q) are. For Il(l) we find

_ .7 sin[LG(x)] sin[La(x)]
I1(£)neutral - nh1(2)neutra1 - 3£)dx x? [Le(x)] =~ [La(x)] J (17)

Thus, as in I, the result of eliminating the central interactions is to set

F(x) and hl(o) equal to zero in the charged point equations. Similarly, for

IZ(Q) we find that

I,(2) = 2 n%h,(2) = [ D3 r)a? |}

neutral neutral

s T . 3/2

o ‘
s Jx Ker1/2(@" %) | 3, 16 G 1=3, [Lalxp) ] X13/2‘1"1 dx, }
2

It may also be shown that Eq.(16) goes to the Holtsmark limit as T » «,

Two approximations have been made thus far. First, we have terminated
the series appearing in the exponential, with the second term. This may be
justified, as in I, by the consideration of the analytic form of the terms
appearing in the series, and by direct numerical calculations. The results
of such calculations will be presented in Sect. III. The second approxima-
tion concerns the use of collective coordinates in the evaluation of the many-
dimensional integrals occurring in this theory.

It is shown in Appendix A of I that the evaluation of the many-dimensional

integrals involved in the calculation of T(%) may be transformed into integrals
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over collective coordinates which have a form that is easily evaluated. For

convenience, the form of these collective-coordinate integrals, along with

solutions is stated below:

r
]

j,,,Jexp{_ %'Zk[ékxk2+2bkxé]}Jnkdxk

(19)
const x exp{%»zkbk2l(1+Ak)} X [1—a3+a4---],

where Ak and bk are specific functions of k, the Xk's represent collective
coordinates, and J is the Jacobian of the r-X transformation. The series
of terms in brackets represents the possible higher order corrections to the
first Jacobian approximation. 1In the calculations made thus far, ays 35

etc. have been neglected. We assume, of course, that these correction terms
are negligible. However, this assertion must be verified.

The first step in using, and in evaluating the present theory, is to deter-
mine the adjustable parameter o. Perhaps the best choice of o is the onme which
results in a minimum error due to the combined effect of the cluster-expansion
termination error and the Jacobian error. An even better choice of o would"
be one which resulted in the error due to each of the two major sources being
negligible, if this is possible. A clear indication that such a circumstance
had occurred would be the existence of a distinct and extended range of o
values over which the T(&) curve, and hence the P(e) curve, would remain
stationary; the requirement of such a range woudd virtually rule out any
possibility that the two errors had merely cancelled one another. The latter
choice was shown to be possible, and was the one chosen to determine the
best value of o; specifically, an a value lying at the approximate center

of the stationary range was the one chosen.
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Rather than rely solely on the above argument, this criterion was subjected
to several tests. First, the second term in the cluster expansion was calculated,
and is shown in Fig.l to contribute less than 2% to any point on the P(g)
curve in a ''worst case' situation. Similarly, the a, term in the Jacobian
correction series was evaluated. It is shown in Fig;Z that, in the o region
chosen for the calculation, this term, which indicates skewness of the collec-
tive coordinate distribution,is negligible. From the related structure of a,
it may be deduced that the same choice of a will also make a, negligible. 1In
an effort to also rule out the possibility that although a, and a, are small,
the entire series is appreciable, a special case is considered.

Since the theory of B-M should indeed be valid for dilute systems at
sufficiently high temperature, P(e) curves predicted by both theories at a=
0.2, should agree quite well (a = 0.0 corresponds to the Holtsmark case).

It is shown graphically in the next section that, in this instance, the present
theory without Jacobian corrections yields a P(e) curve almost identical

to that predicted from the B-M theory. The assertion is that in this case,
ags 3, and the entire Jacobian correction serieslare really negligible.
Figure 2 indicates that freedom to choose the correct o value corresponding

to a given a results in ag having at least the same order of magnitude for
a>0.2 as it did when a = 0.2. 1If the a variation affects ag and a, in this
manner, it is plausible to expect the entire series to be similarly affected.
Thus, by this argument too, we expect the present theory without Jacobian
correction to be valid for rather high-density, low-temperature regions (e.g.,
a=0.,8).

A final attempt at verifying the procedure is shown in Fig.3. Here we

see a comparison of a Monte Carlo calculation of P(e) for a = 0.8 (the largest
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deviation from the Holtsmark distribution considered in this paper) and the
corresponding curve for this theory. It is seen that although there are still
some fluctuations in the Monte Carlo curve, it agrees quite well with the

result predicted by the present theory and would seem to further substantiate

the present result.

Actual numerical results are discussed in detail in the next section.

III. Numerical Results and Analysis

It should again be emphasized that all studies of the a flatness region
indicate that in this range the disregarded corrections due to both major
sources of error are indeed negligible. Figures 1 and 2 show these results.
While Fig.l is self-explanatory, Fig.2 may be understood as follows: We may

write6

3 -y'L°. (20)

Since a3O is not a function of £ and since, in additionm, iﬁ is very small
compared to unity (:10_5) for all cases considered, it is set equal to zero”

in all further discussions. In order to gain some impression of the importance
of the a, correction, we consider its influence on the calculated values of
TO(Q)/TO(O). In view of the fact that y' is quite small, it is permissible

to write

14

T_(2)T_(0) exp{-yL2}[1+y'L2)]

(21)

14

exp{-(y=y')L2}.

A measure of the importance of the correction due to ag in this instance

may be given by plotting the ratio of y'/y versus a for a values of interest.
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It is'clearly seen from Fig.2 that in the regions of flatness, a, amounts
to an insignificant correction.

Figures 4 and 5 show graphs of P(¢) versus ¢ for several values of a,
while Figs.6 and 7 indicate the differences occurring between the B-M theory
and the present theory for cases characterized by a = 0.2 and a = 0.8. It
will be noticed that the difference between the two theories increases as the mag-
nitude of a increases, and that the B-M theory favors weaker fields than does the
proposed theory. One possible explanation for the direction of the difference
between the two may lie in the fact that in Baranger's second correction
term to T(R), eXP[L3/2W2(aLl/2)], the linearized pait-correlation function
is used instead of the non-linearized form. It has been argued by B-M that
the difference between the two functional forms should not really matter since
the procedure was "also in the spirit of the Debye-Hiickel theory."7 However,

l/2) on the final

Fig.8 illustrates that the effect of a reduction in Wz(aL
P(e) cufve may be very large. A similar reduction in the second correction
term in the present theory leads to only a slight change in the P(e) curve
under identical conditions; this may be deduced from Fig.l. A reduction

in the magnitude of ¥y is what one would expect if the nonlinearized Debye-
Huckel function were used instead of the linearized version: this is because
the linearized form underestimates the contribution to the pair-correlation
function from strong fields‘and hence overemphasizes the Wz term.. It would

be necessary to carry out a calculation of ¥, using the nonlinearized function

before the final magnitude of the reduction could be ascertained.

Tables I and II list some tabulated values of P(e) for reference.
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IV. Conclusion

This paper discusses the calculation of electric microfields in low-
frequency component plasmas. It depends largely on I for the development
of the necessary formalism. For the plasma under consideration, this method
of calculating electric microfields in plasma has been shown to be effective
over a wide temperature-density range; it goes to the Holtsmark limit as T +
and at a = 0.8 it has been shown to predict a reliable result. A comparison
of this method with that of B-M clearly indicates that while the latter
iz good at high teﬁperatures and low densities (a = 0.2) it becomes progres-—
sively inaccurate as a is raised from 0.2 to 0.8. The net result of these
calculations is that for the charged-point and the nuetral-point cases, the
distribution curves generated by the present theory favor slightly stronger
fields than does the theory of B-M.

As in I, the method of including noncentral forces through the mechanism

of collective coordinates is shown to be highly effective. Exactly how good

1

this method is, is evidenced when the second term in the cluster expansion is
calculated; here one finds that the noncentral, two-particle correlations are
included, through the use of collective coordinates, to the approximation of
the nonlinear Debye-HGckel result. Since this second term is only a small
correction to the theory, even in the case of high a values, such an approxi-
mation must be considered highly accurate.. Furthermore, during the derivation
of the general formalism, especially that part relating to the cluster ex-
pansion, the fact that it was not necessary to explicitly mention noncentral

interactions resulted in much simplification.
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FIGURE CAPTIONS

A comparison of two T(2) approximations as applied to the present
theory of the electric microfield distribution function P(e¢)
(Charged point case). ¢ is in units of €,

An estimate of the importance of the Jacobian correction term, aj.

P(e) curves calculated for any of the o values lying in the heavy

section of a given line will agree to within several percent (at
worst) over the entire range of ¢ values considered in this paper.
For further explanation, see Section III of the text.

A comparison of the electric microfield distribution P(e) calculated
by the present theory, with that predicted by a Monte Carlo calcula-
tion (40,000 particle configurationms).

The electric microfield distribution function P(c), at a charged
point, for several values of a; € is in units of €5

The electric microfield distribution function P(e), at a neutral
point, for several values of a; ¢ is in units of eo.

A comparison of the electric microfield distribution function (at

a charged point) determined by B-~M, with that predicted by the
present theory; € is in units of €5

A comparison of the electric microfield distribution function (at

a neutral point) determined by B-M, with that predicted by the
present theory; € is in units of €,°

A comparison of two T(L) approximations as applied to the B~-M
theory of the electric microfield distribution function P(g)

(charged point case). ¢ is in units of 5"




“14-
Table 1

Probability distributions, P(e), at a charged point for several values

of a. The electric field strength, e, is in units of € .

€ a=0.2 a = 0.4 ... .a= 0.6 a=20.8
0.1 0.00710 0.01244 ©0.02229 0.04114
0.2 0.02779 0.04801 0.08397 0.14866
0.3 0.06028 0.10180 0.17146 0.28527
0.4 0.10187 0.16687 0.26777 0.41354
0.5 0.14926 0.23557 0.35752 0.51032
0.6 0.19894 0.30091 0.43017 0.56853
0.7 0.24755 0.35745 0.48081 0.59163
0.8 - 0.29220 0.40179 0.50909 0.58755
0.9 0.33065 0.43248 0.51766 0.56481
1.0 0.36144 - 0.44972 0.51053 0.53069
1.1 0.38385 0.45484 0.49199 0.49072
1.2 0.39782 0.44982 0.46591 . 0.44876
1.3 0.40385 0.43690 0.43546 0.40731
1.4 ©0.40279 - 0.41822 0.40305 0.36786
1.5 0.39573 0.39572 0.37041 0.33125
1.6 0.38385 0.37102 0.33870 0.29782
1.7 0.36832 0.34537 ©0.30864 0.26763
1.8 0.35021 0.31974 0.28065 0.24057
1.9 0.33049 0.29480 0.25489 0.21644
2.0 0.30994 0.27100 0.23140 0.19498

2.5 0.21235 0.17489 0.14420 0.11889




Table I Cont'd.
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€ a= 0.2 a= 0.4 a= 0.6 a=20.8
3.0 0.14096 0.11423 0.09330 0.07636
3.5 0.09496 0.07722 0.06310 0.05152
4.0 0.06601 0.05423 0.04447 0.03627
4.5 0.04749 0.03945 0.03247 0.02645
5.0 0.03528 0.02960 0.02443 0.01988
6.0 0.02112 0.01798 0.01489 0.01205
7.0 0.01375 0.01181 0.00978 0.00788
8.0 0.00955 - 0.00823 0.00680 0.00544
9.0 0.00697 0.00604 0.00499 0.00399
10.0 0.00526 0.00455 0.00373 0.00297
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Table 11

Probability distributions, P(e), .at a Neutral point for several values

of a. The electric field strength, €, is in units of €,

€ a= 0.2 a= 0.4 a=20.6 a=0.8
0.1 0.00696 0.01159 0.01938 0.03341
0.2 0.02723 0.04475 0.07321 0.12143
0.3 0.05908 0.09505 0.15020 _ 0.23520
0.4 0.09989 0.15612 0.23601 0.34511
0.5 0.14643 10.22098 0.31745 0.43193
0.6 0.19529 0.28313 0.38516 0.48866
0.7 0.24319 0.33751 0.43440 0.51674
0.8 0.28729 0.38083 0.46434 - 0.52160
0.9 0.32539 0.41160 0.47677 0.50962
1.0 0.35604 0.42985 0.47487 0.48656
1.1 0.37851 0.43668 0.46215 0.45700
1.2 0.39273 0.43384 0.44193 0.42432
1.3 0.39914 0.42331 0.41706 0.39083
1.4 0.39857 0.40709 0.38960 0.35803
1.5 0.39206 0.38697 0.36132 0.32684
1.6 0.38077 0.36447 0.33331 0.29775
1.7 0.36582 0.34080 0.30633 0.27098
1.8 0.34828 0.31689 0.28085 0.24658

1.9 0.32908 0.29342 0.25710 0.22446




Table TII Cont'd.
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€ a=20.2 a=0.4 a=20.6 a=20.8
2.0 0.30900 0.27085 0.23520 0.20451
2.5 0.21296 0.17812 0.15167 0.13120
3.0 0.14208 0.11818. 0.10098 0.08797
3.5 0.09611 0.08095 0.06999 0.06162
4.0 0.06704 0.05749 0.05038 0.04484
4.5 0.04838 0.04224 0.03749 0.03371
5.0 0.03603 0.03197 0.02870 0.02603
6.0 0.02166 0.01971 0.01804 0.01659
7.0 0.01415 0.01312 0.01217 0.01135
8.0 0.09856 0.00925 0.00868 0.00815
9.0 0.00722 0.00686 0.00652 0.00623
10.0 0.00546 0.00522 0.00498 0.00480
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